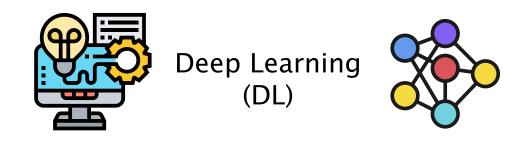
Attack as Defense: Characterizing Adversarial Examples using Robustness

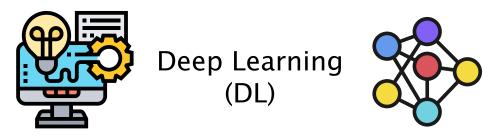
<u>Zhe Zhao</u>, Guangke Chen, Jingyi Wang, Yiwei Yang, Fu Song, Jun Sun

Zhe Zhao (zhaozhe1@shanghaitech.edu.cn) ⊠ Fu Song (songfu@shanghaitech.edu.cn)

Deep learning and adversarial examples

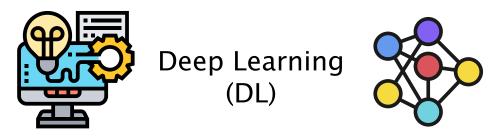


Deep learning and adversarial examples



However, DL is vulnerable to adversarial examples...

Deep learning and adversarial examples



However, DL is vulnerable to adversarial examples...

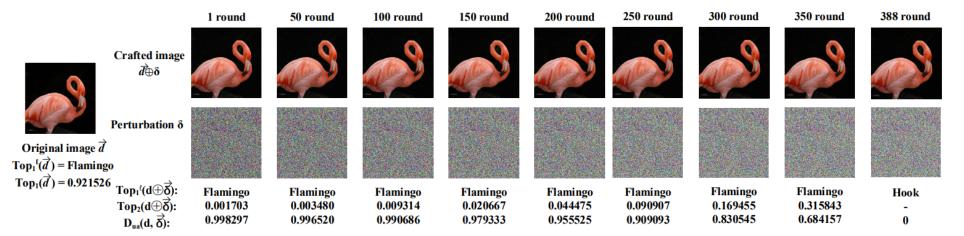


Figure from "Taking Care of The Discretization Problem: A Comprehensive Study of the Discretization Problem and A Black-Box Adversarial Attack in Discrete Integer Domain", Lei Bu; Zhe Zhao; Yuchao Duan; Fu Song.

Attack and defense

An extensive number of adversarial attacks have been proposed since C. Szegedy et al.

White-box attack Black-box attack

Targeted attack Untargeted attack Distance constraint: L_0, L_2, L_∞

Reference:

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2014. Intriguing Properties of Neural Networks. In Proceedings of International Conference on Learning Representations.

Attack and defense

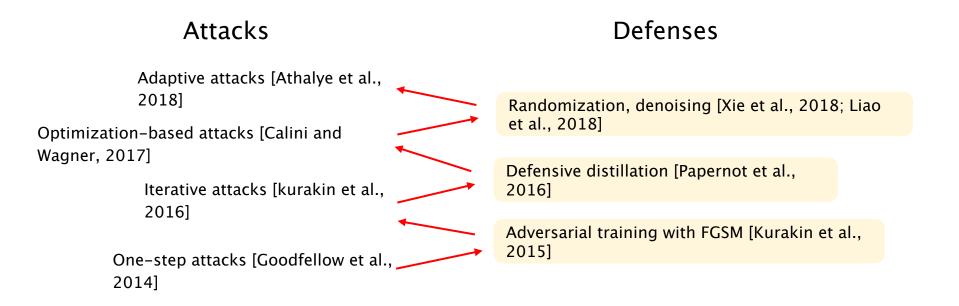
An extensive number of adversarial attacks have been proposed since C. Szegedy et al.

Attempted defenses against adversarial examples:

Adversarial train Input transformation Adversarial detector

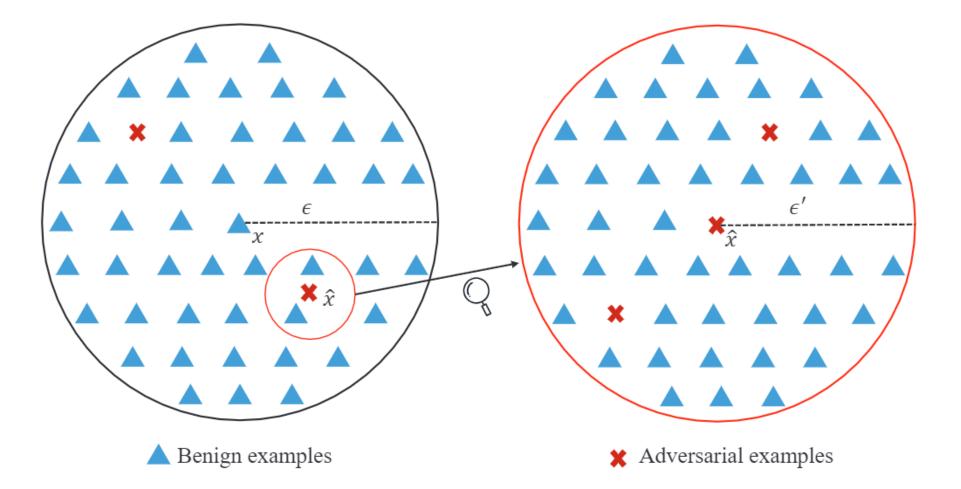
Reference:

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2014. Intriguing Properties of Neural Networks. In Proceedings of International Conference on Learning Representations.

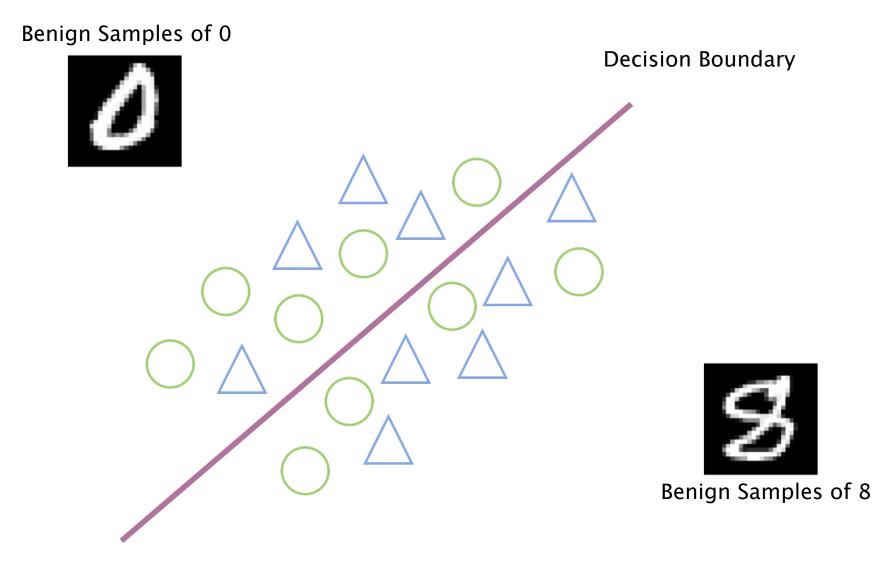


Attack as defense: Idea

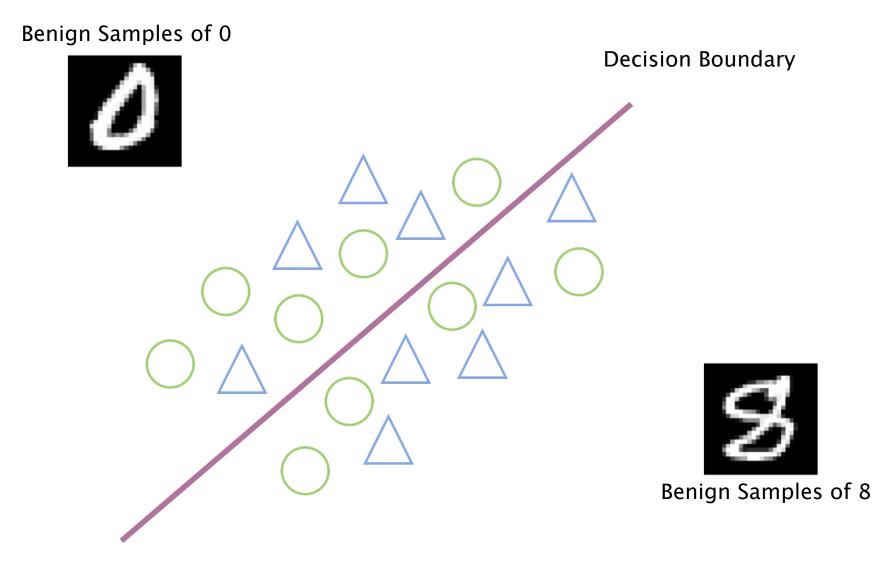
Attack as defense: Idea



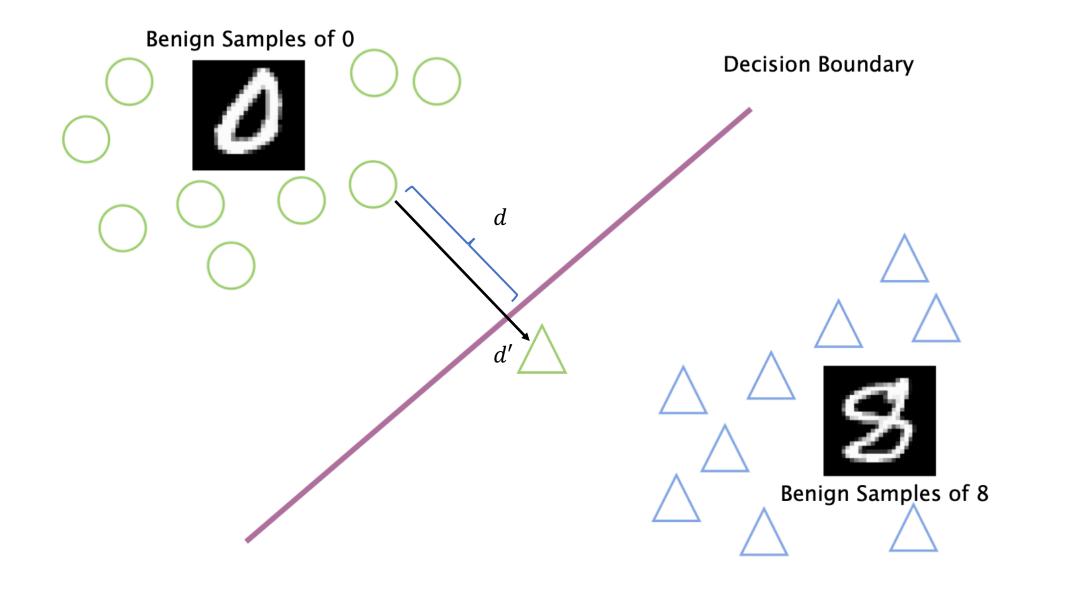
Attack as defense: Intuition



Attack as defense: Intuition



Attack as defense: Intuition



(Local) Robustness

$$\left\| x - x' \right\|_{p} \le \delta, \ \mathcal{D}(x) = \mathcal{D}\left(x' \right)$$

(Local) Robustness

$$\|x - x'\|_p \le \delta, \ \mathcal{D}(x) = \mathcal{D}(x')$$
 CLEVER Score

Reference:

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca Daniel. 2018. Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach. In Proceedings of International Conference on Learning Representations.

(Local) Robustness

$$\|x - x'\|_p \le \delta, \ \mathcal{D}(x) = \mathcal{D}(x')$$
 CLEVER Score

Dataset	Label for	Ronign overnlag	Adversarial examples								Avg.
	Evaluate	Benign examples	FGSM	λ	BIM	λ	JSMA	λ	C&W	λ	λ
MNIST	Untarget	3.5572 ± 0.3342	0.1093 ± 0.0506	32.55	0.0256 ± 0.0031	138.95	0.0550 ± 0.0060	64.68	0.0004 ± 0.0001	8893	74.77
	Target-2	3.6711 ± 0.3296	0.1148 ± 0.0427	31.98	0.0258 ± 0.0031	142.29	0.0558 ± 0.0063	65.79	0.0004 ± 0.0001	9178	74.62
WIND I	Target-5	3.8303 ± 0.3113	0.2047 ± 0.0431	18.71	0.1582 ± 0.0084	24.21	0.1898 ± 0.0096	20.18	0.1384 ± 0.0043	27.68	22.17
	LLC	3.8372 ± 0.3097	0.2390 ± 0.0421	16.06	0.1647 ± 0.0071	23.30	0.2120 ± 0.0076	18.10	0.1406 ± 0.0045	27.29	20.29
CIFAR10	Untarget	0.3851 ± 0.1850	0.2743 ± 0.1627	1.40	0.0329 ± 0.0033	11.71	0.0128 ± 0.0021	30.09	0.0005 ± 0.0002	770	4.81
	Target-2	0.4141 ± 0.1806	0.2971 ± 0.1675	1.39	0.0380 ± 0.0044	10.90	0.0129 ± 0.0021	32.10	0.0005 ± 0.0002	828	4.75
	Target-5	0.4657 ± 0.1913	0.3389 ± 0.1675	1.37	0.0971 ± 0.0117	4.80	0.0610 ± 0.0061	7.63	0.0925 ± 0.0168	5.03	3.16
	LLC	0.4829 ± 0.1913	0.3572 ± 0.1713	1.35	0.1091 ± 0.0132	4.43	0.0918 ± 0.0095	5.26	0.1035 ± 0.0180	4.67	2.92

Reference:

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca Daniel. 2018. Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach. In Proceedings of International Conference on Learning Representations.

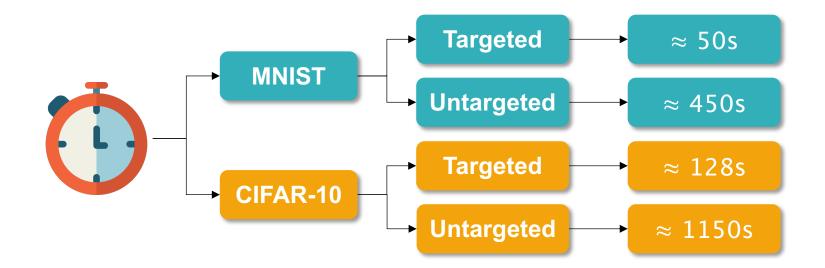
(Local) Robustness

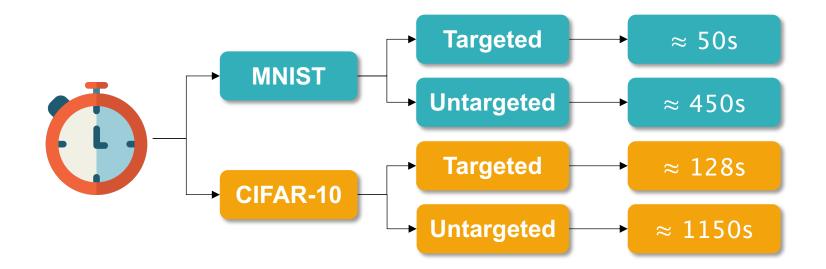
$$\left\|x - x'\right\|_{p} \leq \delta, \ \mathcal{D}(x) = \mathcal{D}\left(x'\right)$$
 CLEVER Score

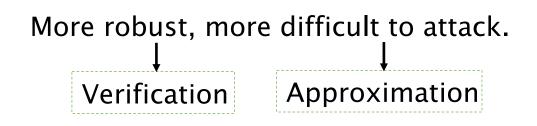
Dataset	Label for	Ronign overnlag	Adversarial examples								Avg.
	Evaluate	Benign examples	FGSM	λ	BIM	λ	JSMA	λ	C&W	λ	λ
MNIST	Untarget	3.5572 ± 0.3342	0.1093 ± 0.0506	32.55	0.0256 ± 0.0031	138.95	0.0550 ± 0.0060	64.68	0.0004 ± 0.0001	8893	74.77
	Target-2	3.6711 ± 0.3296	0.1148 ± 0.0427	31.98	0.0258 ± 0.0031	142.29	0.0558 ± 0.0063	65.79	0.0004 ± 0.0001	9178	74.62
	Target-5	3.8303 ± 0.3113	0.2047 ± 0.0431	18.71	0.1582 ± 0.0084	24.21	0.1898 ± 0.0096	20.18	0.1384 ± 0.0043	27.68	22.17
	LLC	3.8372 ± 0.3097	0.2390 ± 0.0421	16.06	0.1647 ± 0.0071	23.30	0.2120 ± 0.0076	18.10	0.1406 ± 0.0045	27.29	20.29
CIFAR10	Untarget	0.3851 ± 0.1850	0.2743 ± 0.1627	1.40	0.0329 ± 0.0033	11.71	0.0128 ± 0.0021	30.09	0.0005 ± 0.0002	770	4.81
	Target-2	0.4141 ± 0.1806	0.2971 ± 0.1675	1.39	0.0380 ± 0.0044	10.90	0.0129 ± 0.0021	32.10	0.0005 ± 0.0002	828	4.75
	Target-5	0.4657 ± 0.1913	0.3389 ± 0.1675	1.37	0.0971 ± 0.0117	4.80	0.0610 ± 0.0061	7.63	0.0925 ± 0.0168	5.03	3.16
	LLC	0.4829 ± 0.1913	0.3572 ± 0.1713	1.35	0.1091 ± 0.0132	4.43	0.0918 ± 0.0095	5.26	0.1035 ± 0.0180	4.67	2.92

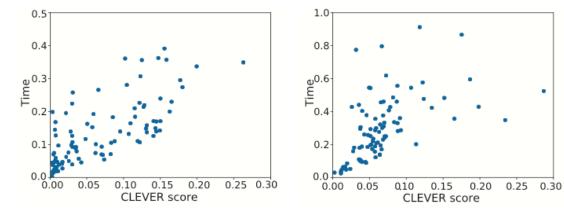
Reference:

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca Daniel. 2018. Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach. In Proceedings of International Conference on Learning Representations.



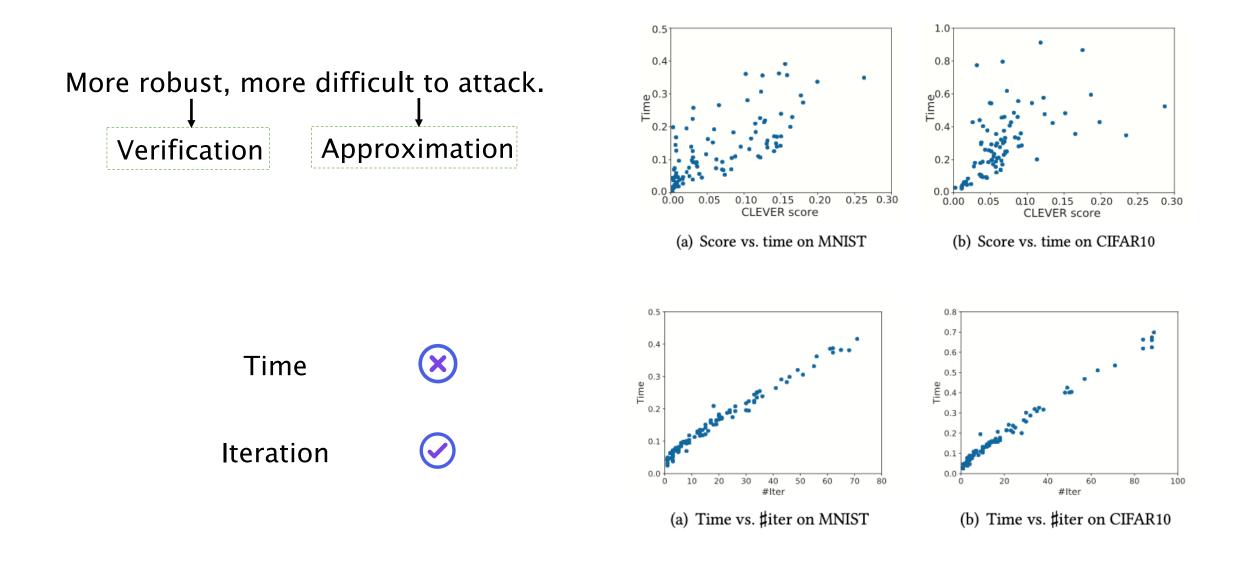


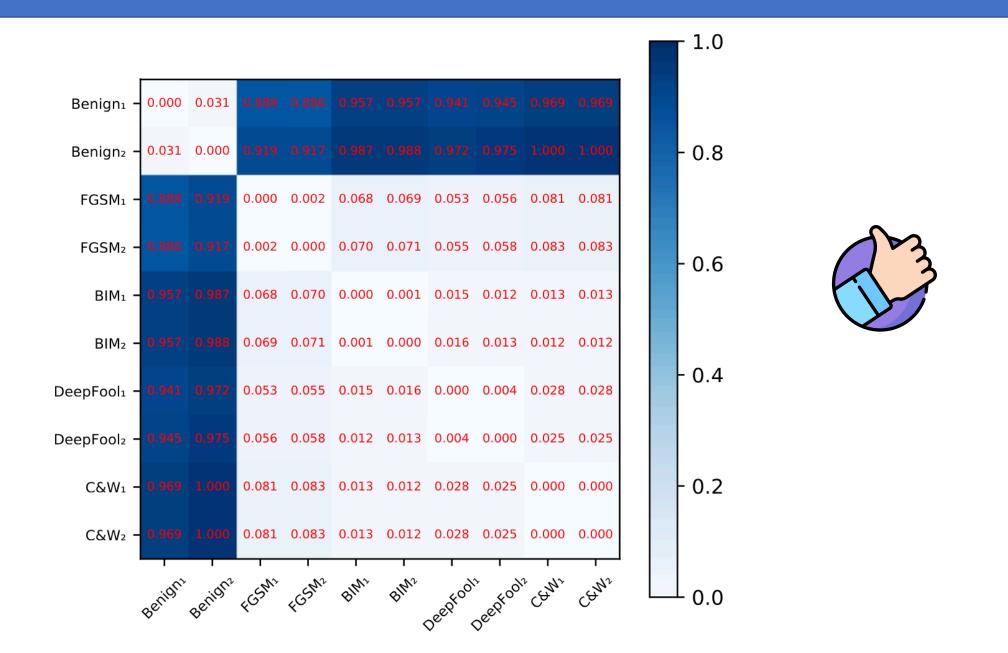


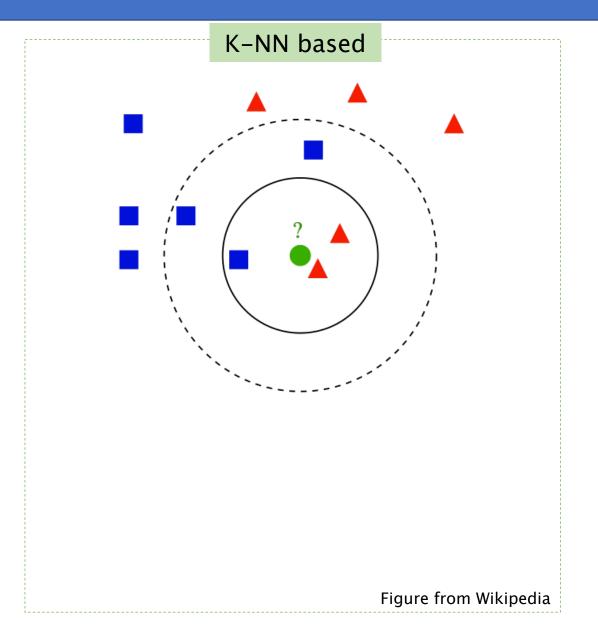


(a) Score vs. time on MNIST

(b) Score vs. time on CIFAR10







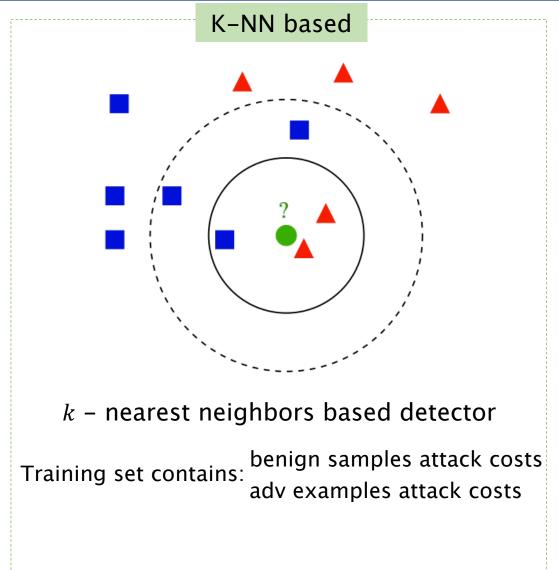
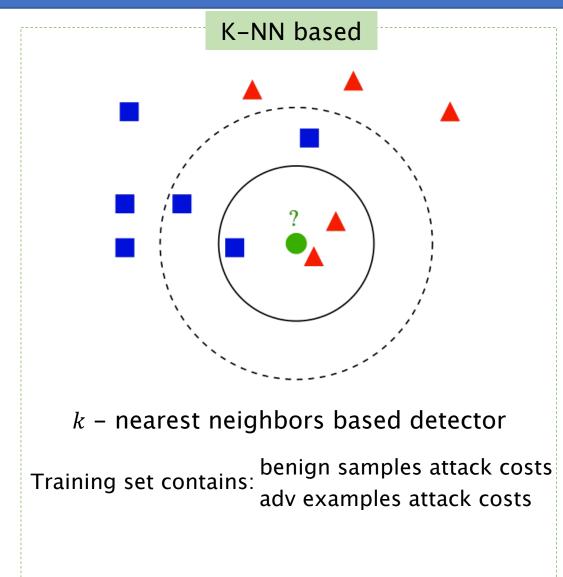


Figure from Wikipedia



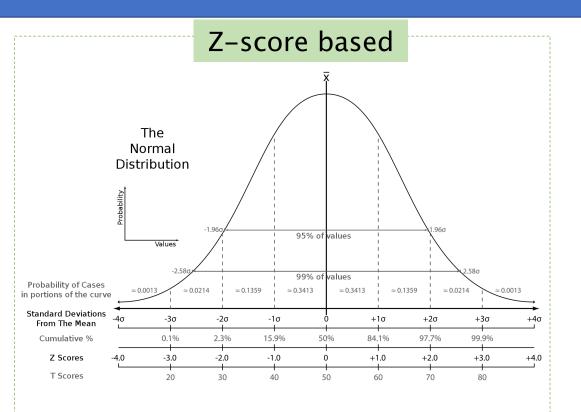
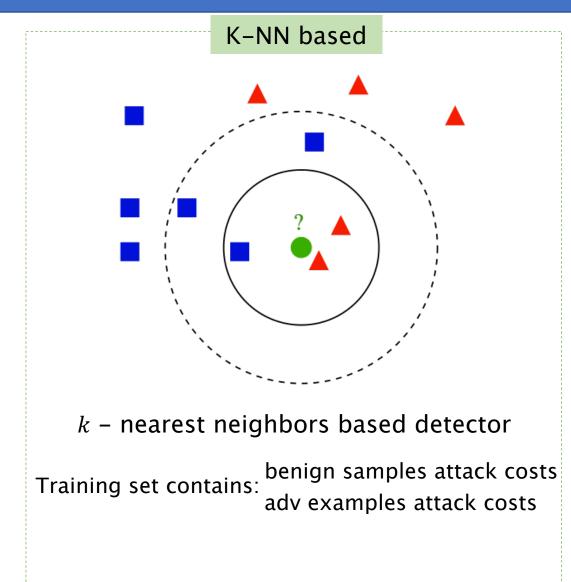


Figure from Wikipedia



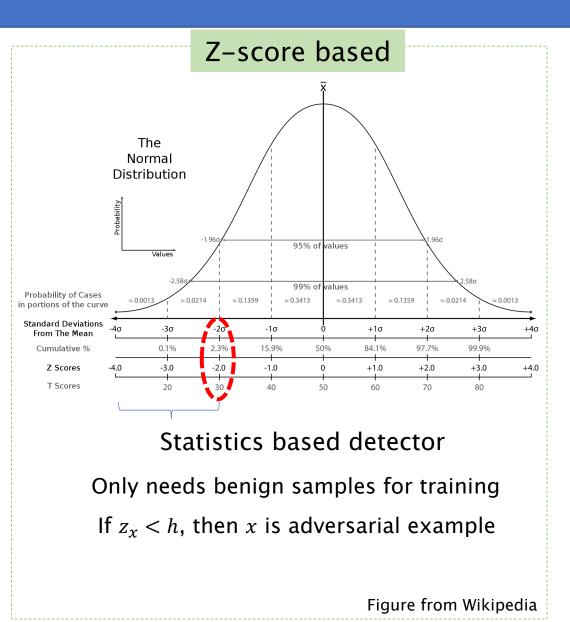


Figure from Wikipedia

Ensemble Detection Approach

Different attack methods have different characteristics.

Can these 'attack as defense' methods be combined?

Ensemble Detection Approach

Different attack methods have different characteristics.

Can these 'attack as defense' methods be combined?

K-NN based

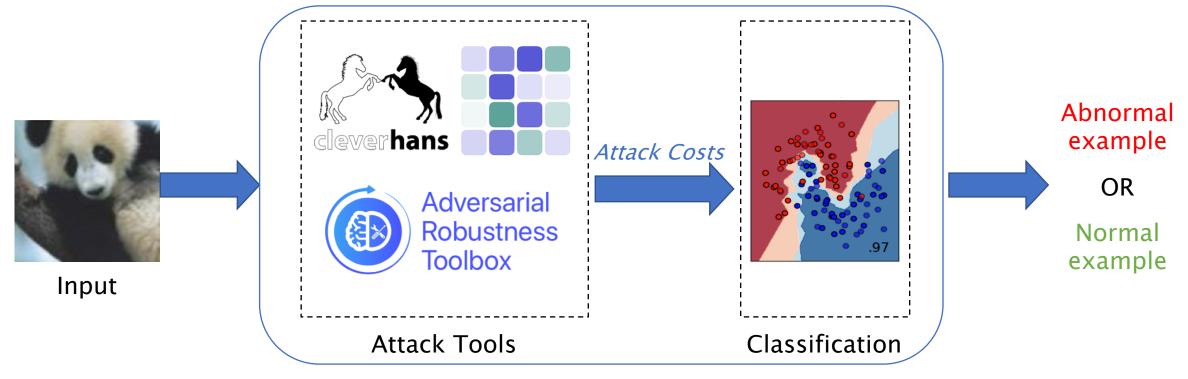
Train the detector with n-dimension attack iterations, where n is the number of attacks.

Z-score based

For each attack, we can construct a Z-Score detector, so we have n independent detectors.

Consider *k* as a hyper-parameter, the ensemble detector classifies an input to adversarial if at least *k* detectors classify the input to adversarial, otherwise benign.

Attack



Attack as Defense Detector

Experiments

Experiments

RQ1. How to select effective attacks for defense?

- Generate adversarial examples with codes and models from [1]
- Select 8 famous adversarial attack methods as defense
- Implemented by Foolbox (<u>https://github.com/bethgelab/foolbox</u>)
- Compare the attack costs between benign and adversarial examples

RQ2. How effective are the selected attacks for defense?

RQ3. How effective and efficient is A²D (i.e., detection)?

Reference: [1] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner.2017. Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410 (2017).

RQ1: How to select effective attacks for defense?

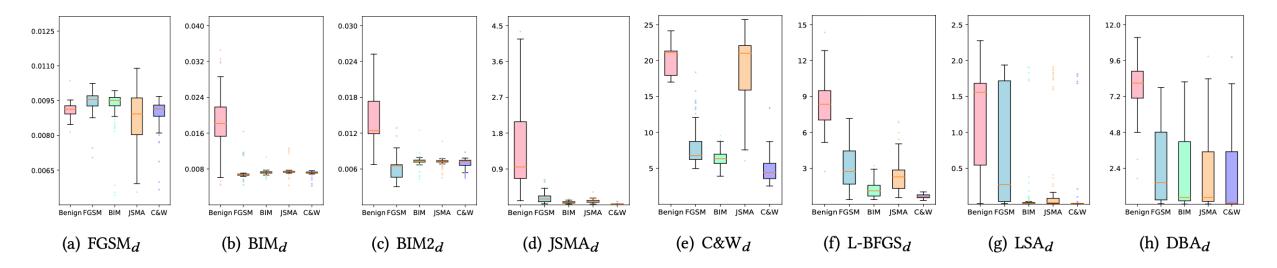
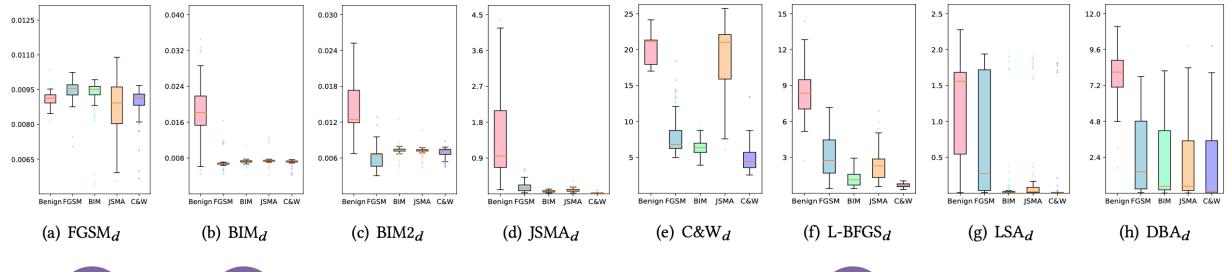


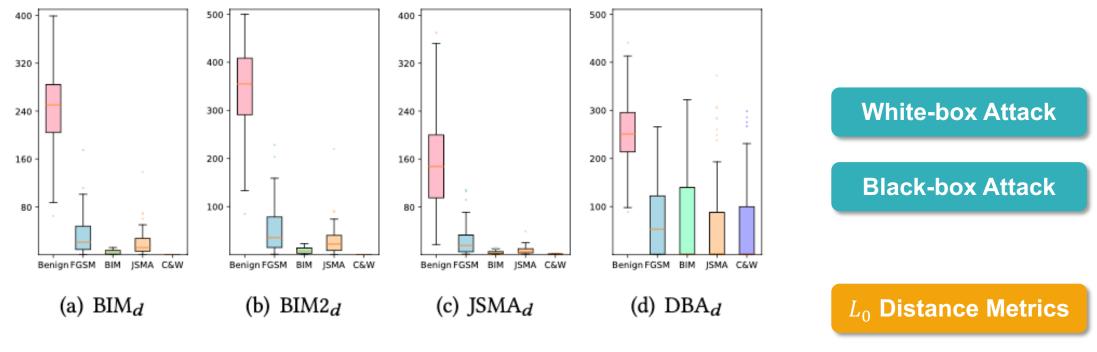
Figure. Attack time of benign and adversarial examples, where y-axis means seconds

RQ1: How to select effective attacks for defense?



• •

RQ1: How to select effective attacks for defense?



L₂ Distance Metrics

 L_{∞} Distance Metrics

Figure. Attack iterations of benign and adversarial examples

Answer to RQ1: Both attack time and the number of iterations can be used to select effective attacks for defense, while non-iterative attacks are not effective.

RQ1. How to select effective attacks for defense?

RQ2. How effective are the selected attacks for defense?

- Select 4 baselines,

KD+BU, LID (ICLR'18), mMutant (ICSE'19), Dissector (ICSE'20)

- Evaluation metric: AUROC

- For a fair comparison, we conduct comparison directly using the same target models and attacks provided by baselines

RQ3. How effective and efficient is A²D (i.e., detection)?

Reference:

[1] Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Sudanthi N. R. Wijewick- rema, Grant Schoenebeck, Dawn Song, Michael E. Houle, and James Bailey. 2018. Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality. In Proceedings of International Conference on Learning Representations.

[2] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019. Adversarial sample detection for deep neural network through model mutation testing. In Proceedings of the 41st International Conference on Software Engineering. IEEE, 1245-1256.

[3] Huiyan Wang, Jingwei Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2020. Dissector: Input Validation for Deep Learning Applications by Crossing-layer Dissection. In The 42th International Conference on Software Engineering. ACM, 727-738.

Env ₁	Attack	JSMA _d	BIM _d	BIM2 _d	DBA _d	BL ₁	BL ₂
	FGSM	0.9653	0.9922	0.9883	0.9504	0.8267	0.9161
MNIST	BIM	0.9986	0.9996	0.9995	0.9625	0.9786	0.9695
	JSMA	0.9923	0.9922	0.9914	0.9497	0.9855	0.9656
	C&W	1.0	1.0	1.0	0.9672	0.9794	0.9502
	FGSM	0.6537	0.712	0.6474	0.6977	0.7015	0.7891
CIFAR10	BIM	0.8558	0.8636	0.861	0.8276	0.8255	0.8496
CIARIO	JSMA	0.9459	0.955	0.9526	0.9452	0.8421	0.9475
	C&W	0.9905	0.9984	0.9988	0.9833	0.9217	0.9799

Env ₂	Attack	JSMA _d	BIM _d	BIM2 _d	DBA _d	BL ₃
	FGSM	0.9665	0.9883	0.9846	0.9595	0.9617
	JSMA	0.9971	0.9984	0.9974	0.984	0.9941
MNIST	DeepFool	0.9918	0.9971	0.9951	0.9587	0.9817
	C&W	0.9456	0.9870	0.9769	0.8672	0.9576
	BB	0.9746	0.9895	0.9852	0.9535	0.9677
	FGSM	0.8808	0.8994	0.8998	0.8746	0.8617
CIFAR10	JSMA	0.9774	0.9890	0.9873	0.9566	0.9682
CIIARIO	DeepFool	0.9832	0.9898	0.9902	0.9769	0.9614
	C&W	0.8842	0.9176	0.9175	0.9004	0.9063

Env ₃	Attack	JSMA _d	BIM _d	BIM2 _d	DBA _d	BL ₄
	FGSM	0.9985	0.9999	1.0	0.9674	0.9993
MNIST	JSMA	0.9972	0.9998	0.9999	0.9113	0.9993
MINIS I	DeepFool	0.9702	0.9877	0.9874	0.9255	0.9892
	C&W	0.9985	1.0	1.0	0.9623	0.9996
	FGSM	0.9945	0.9979	0.9983	0.9629	0.9981
CIFAR10	JSMA	0.9934	0.9962	0.9961	0.976	0.9966
CITARIO	DeepFool	0.9713	0.9703	0.9692	0.9604	0.9618
	C&W	0.9951	0.9981	0.9985	0.9928	0.9968
	FGSM	0.973	0.9763	0.9782	0.9625	0.9617
ImageNet	JSMA	0.9962	0.9805	0.99	0.9937	0.9695
	DeepFool	0.9958	0.9793	0.9892	0.9891	0.9924
	C&W	0.9873	0.9731	0.9801	0.9924	0.9636

Answer to RQ2: Against most attacks on 3 environments, the selected white-box attacks JSMA_d, BIM_d and $BIM2_d$ are more effective than the baselines.

Env ₁	Attack	JSMA _d	BIM _d	BIM2 _d	DBA _d	BL ₁	BL ₂
	FGSM	0.9653	0.9922	0.9883	0.9504	0.8267	0.9161
MNIST	BIM	0.9986	0.9996	0.9995	0.9625	0.9786	0.9695
MINIS I	JSMA	0.9923	0.9922	0.9914	0.9497	0.9855	0.9656
	C&W	1.0	1.0	1.0	0.9672	0.9794	0.9502
	FGSM	0.6537	0.712	0.6474	0.6977	0.7015	0.7891
CIFAR10	BIM	0.8558	0.8636	0.861	0.8276	0.8255	0.8496
CITAKIU	JSMA	0.9459	0.955	0.9526	0.9452	0.8421	0.9475
	C&W	0.9905	0.9984	0.9988	0.9833	0.9217	0.9799

Env ₂	Attack	JSMA _d	BIM _d	BIM2 _d	DBA _d	BL ₃
	FGSM	0.9665	0.9883	0.9846	0.9595	0.9617
	JSMA	0.9971	0.9984	0.9974	0.984	0.9941
MNIST	DeepFool	0.9918	0.9971	0.9951	0.9587	0.9817
	C&W	0.9456	0.9870	0.9769	0.8672	0.9576
	BB	0.9746	0.9895	0.9852	0.9535	0.9677
	FGSM	0.8808	0.8994	0.8998	0.8746	0.8617
CIFAR10	JSMA	0.9774	0.9890	0.9873	0.9566	0.9682
	DeepFool	0.9832	0.9898	0.9902	0.9769	0.9614
	C&W	0.8842	0.9176	0.9175	0.9004	0.9063

Env ₃	Attack	JSMA _d	BIM _d	BIM2 _d	DBA _d	BL ₄
	FGSM	0.9985	0.9999	1.0	0.9674	0.9993
MNIST	JSMA	0.9972	0.9998	0.9999	0.9113	0.9993
WINIS I	DeepFool	0.9702	0.9877	0.9874	0.9255	0.9892
	C&W	0.9985	1.0	1.0	0.9623	0.9996
	FGSM	0.9945	0.9979	0.9983	0.9629	0.9981
CIFAR10	JSMA	0.9934	0.9962	0.9961	0.976	0.9966
CITARIO	DeepFool	0.9713	0.9703	0.9692	0.9604	0.9618
	C&W	0.9951	0.9981	0.9985	0.9928	0.9968
	FGSM	0.973	0.9763	0.9782	0.9625	0.9617
ImageNet	JSMA	0.9962	0.9805	0.99	0.9937	0.9695
	DeepFool	0.9958	0.9793	0.9892	0.9891	0.9924
	C&W	0.9873	0.9731	0.9801	0.9924	0.9636

Q: Why the AUROC results on ImageNet of JSMA_d and DBA_d are close to or surpass BIM_d ?

A: Image dimension.

Env ₁	Attack	JSMA _d	BIM _d	BIM2 _d	DBA _d	BL ₁	BL ₂
	FGSM	0.9653	0.9922	0.9883	0.9504	0.8267	0.9161
MNIST	BIM	0.9986	0.9996	0.9995	0.9625	0.9786	0.9695
WIINIS I	JSMA	0.9923	0.9922	0.9914	0.9497	0.9855	0.9656
	C&W	1.0	1.0	1.0	0.9672	0.9794	0.9502
	FGSM	0.6537	0.712	0.6474	0.6977	0.7015	0.7891
CIFAR10	BIM	0.8558	0.8636	0.861	0.8276	0.8255	0.8496
CIIANIU	JSMA	0.9459	0.955	0.9526	0.9452	0.8421	0.9475
	C&W	0.9905	0.9984	0.9988	0.9833	0.9217	0.9799

Env ₂	Attack	JSMA _d	BIM _d	BIM2 _d	DBAd	BL ₃
	FGSM	0.9665	0.9883	0.9846	0.9595	0.9617
	JSMA	0.9971	0.9984	0.9974	0.984	0.9941
MNIST	DeepFool	0.9918	0.9971	0.9951	0.9587	0.9817
	C&W	0.9456	0.9870	0.9769	0.8672	0.9576
	BB	0.9746	0.9895	0.9852	0.9535	0.9677
	FGSM	0.8808	0.8994	0.8998	0.8746	0.8617
CIFAR10	JSMA	0.9774	0.9890	0.9873	0.9566	0.9682
	DeepFool	0.9832	0.9898	0.9902	0.9769	0.9614
	C&W	0.8842	0.9176	0.9175	0.9004	0.9063

Env ₃	Attack	JSMA _d	BIM _d	BIM2 _d	DBA _d	BL ₄
	FGSM	0.9985	0.9999	1.0	0.9674	0.9993
MNIST	JSMA	0.9972	0.9998	0.9999	0.9113	0.9993
MINIS I	DeepFool	0.9702	0.9877	0.9874	0.9255	0.9892
	C&W	0.9985	1.0	1.0	0.9623	0.9996
	FGSM	0.9945	0.9979	0.9983	0.9629	0.9981
CIFAR10	JSMA	0.9934	0.9962	0.9961	0.976	0.9966
CIIARIO	DeepFool	0.9713	0.9703	0.9692	0.9604	0.9618
	C&W	0.9951	0.9981	0.9985	0.9928	0.9968
	FGSM	0.973	0.9763	0.9782	0.9625	0.9617
ImageNet	JSMA	0.9962	0.9805	0.99	0.9937	0.9695
	DeepFool	0.9958	0.9793	0.9892	0.9891	0.9924
	C&W	0.9873	0.9731	0.9801	0.9924	0.9636

Q: Why the AUROC results on ImageNet of JSMA_d and DBA_d are close to or surpass BIM_d ?

A: Image dimension.

Q: Why BL₂ performs better than the others on CIFAR10 adversarial examples crafted by FGSM?

A: Model accuracy.

RQ1. How to select effective attacks for defense?

RQ2. How effective are the selected attacks for defense?

RQ3. How effective and efficient is A²D (i.e., detection)?

- K-NN based detectors and Z-Score based detectors
- Evaluation metric: detection accuracy

RQ3. How effective and efficient is A2D (i.e., detection)?

Using K-NN based detector on MNIST dataset as a demo:

The average detection accuracy and time cost:

- JSMA_d: 90.84%, 1.8ms
- BIM_d: 98.09%, 2.1ms
- BIM2_d: 96.17%, 2.1ms
- DBA_d: 87.42%, 11ms
- END (Ensemble detector) : 99.35%, NA

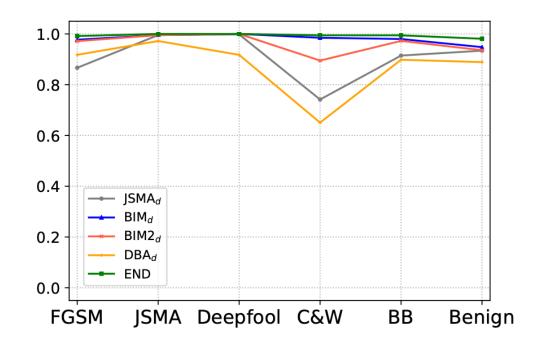


Figure. Detection accuracy, where *x*-axis means the class of inputs, different lines represent the detection results of different detectors

RQ3. How effective and efficient is A2D (i.e., detection)?

Some findings:

- DBA_d performs worse, but could protect the privacy of the model
- END performs better

- Z-Score based detectors are able to achieve comparable or even better accuracy than K-NN based detectors, although Z-score based detectors only use benign examples

- For white-box attacks, attacking an adversarial examples requires only about 10 gradient queries on average

- Our detectors and corresponding parameters have good interpretability, the defenders can adjust FPR and other results according to their needs

If the attacker know the existence of 'attack as defense', what would they do?

If the attacker know the existence of 'attack as defense', what would they do?

Encode the attack cost into the loss function?

Adaptive attack

If the attacker know the existence of 'attack as defense', what would they do?

Encode the attack cost into the loss function?

Do we have any other ways to increase the attack cost?

Increase the confidence/strength of adversarial examples

Initially considered by Carlini and Wagner for increasing transferability

Confidence is controlled by the parameter κ

Reference:

Nicholas Carlini and David A.Wagner. 2017. Towards Evaluating the Robustness of Neural Networks. In Proceedings of IEEE Symposium on Security and Privacy (S&P). 39-57.

Increasing κ from 0 to 8 on MNIST:

 $\kappa = 0$ $\kappa = 0$ No. of Attack Iterations = 1.01

Increasing κ from 0 to 8 on MNIST:

 $\kappa = 0$ K = 0 K = 0 K = 0 K = 0 K = 0 K = 0 K = 0 K = 0 K = 0 K = 0 K = 0 K = 0 K = 0

 $\kappa = 8$ CLEVER Score = 0.17 No. of Attack Iterations = 42.59 Increasing κ from 0 to 8 on MNIST:

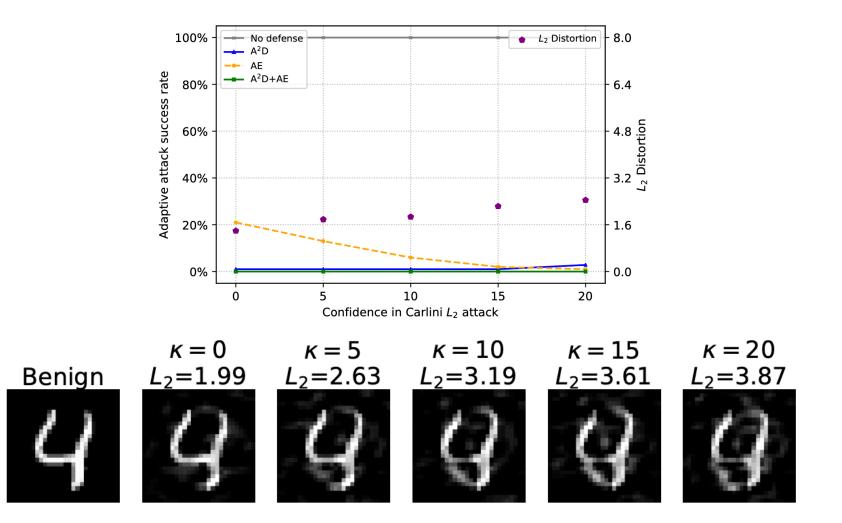
 $\kappa = 0$ $\kappa = 8$ No. of Attack Iterations = 1.01 $\kappa = 8$ CLEVER Score = 0.17
No. of Attack Iterations = 42.59

Does this mean that attack as defense is invalid?

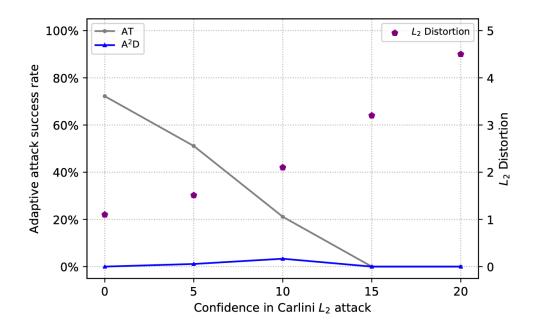
	CLEVER Score ≈ 0		CLEVER Score = 0.17
$\kappa = 0$	No. of Attack Iterations = 1.01	$\kappa = 8$	No. of Attack Iterations = 42.59
	L_2 distance = 1.71		L_2 distance = 2.53

Combine A²D with other detectors that are aimed at large distortion.

Combine A²D with other detectors that are aimed at large distortion.



Combine with adversarial training which enhances the DL model, so the attackers cannot generate adversarial examples with high κ easily. Combine with adversarial training which enhances the DL model, so the attackers cannot generate adversarial examples with high κ easily.



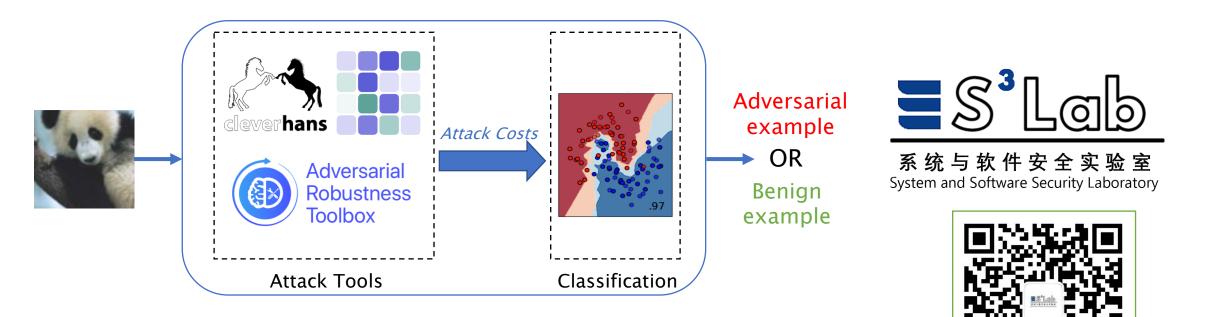
Benign Airplane

Attack to 'Horse'

 $\kappa = 0$

 $\kappa = 10$

Conclusion



System and Software Security Lab (S3L), ShanghaiTech University, Shanghai, China, <u>http://s3l.shanghaitech.edu.cn/</u>

S3L WeChat QR Code

Zhe Zhao (zhaozhe1@shanghaitech.edu.cn) Fu Song (songfu@shanghaitech.edu.cn)

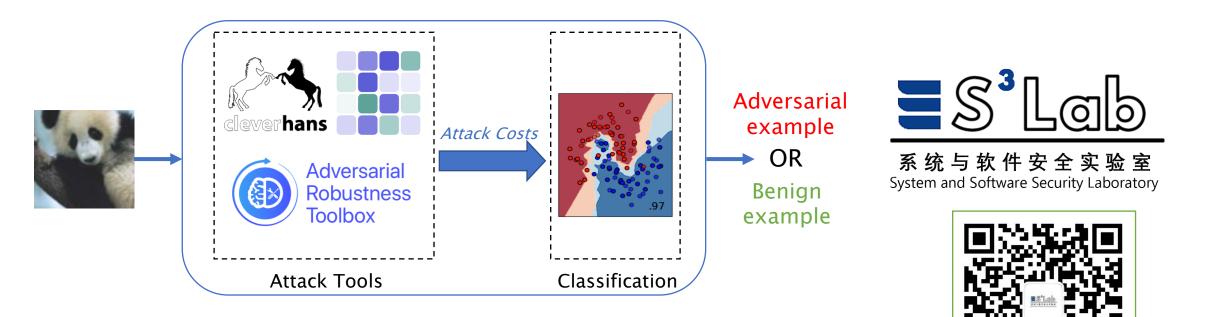
Icon made by Freepik from www.flaticon.com

Icon made by Eucalyp from www.flaticon.com

Icon made by Flat Icons from www.flaticon.com

Icon made by Becris from www.flaticon.com

Conclusion



System and Software Security Lab (S3L), ShanghaiTech University, Shanghai, China, <u>http://s3l.shanghaitech.edu.cn/</u>

S3L WeChat QR Code

Zhe Zhao (zhaozhe1@shanghaitech.edu.cn) Fu Song (songfu@shanghaitech.edu.cn)